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We consider a vortex-sink gas flow in a space between two parallel plates perpendicular to the rotation axis and
separated by a distance h, We assume a spherical particle of diameter d is added to the flow. If the particle does not
interact with the plane, then as it moves along with the flow under steadystate conditions it will trace out a circular
orbit whose radius is found from the equation for the balance of the radial forces acting on the particle:
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Equation (1) reflects the fact that the centrifugal force is balanced by the radial drag, Here v, and v, are the
radial and tangential components of the flow velocity, p and p; are the gas and particle densities, and ¢ is the particle
drag coefficient, For a vortex sink of an incompressible liquid, we have

%

T
Y%= T T T
Using this and Eq. (1), we find the equilibrium orbit to have a radius
=g 2 (5] e 2)
Here I' and Q are the circulation and flow per unit length of the vortex sink,

An experimental study of the motion of a particle in an vortex chamber does not verify Eq. (2); two
characteristic properties of this motion are found. First, under steady-state conditions, the particle does not rotate
along with the flow, but lags behind it significantly; second, the particle interacts intensely with the chamber walls,
undergoing many collisions of a more or less periodic nature with both walls, These two features are obviously
related to each other; i, e., the lagging of the particle behind the flow is due to loss of angular momentum by the
particle during its collision with the wall. The condition for steady-state motion would be that this loss be balanced by
the twisting effect of the flow. At a sufficiently high flow rate the particle velocity does not depend on the orientation
of the chamber in the gravitational field; therefore, we neglect this orientation below.

As a result of a collision of the particle with the wall, the particle will not only lose normal and tangential
components of its initial momentum, but it will also acquire an angular velocity w; accordingly, a transverse Magnus
force must be added to the forces acting on the particle, The magnitude of this Magnus force can be approximated on
the basis of the following arguments.

Consider a sphere of radius a rotating at angular velocity w is encompassed by a flow at velocity V directed
perpendicular to the rotation axis, At a distance z from the center of the sphere, we single out a layer of thickness dz
perpendicular to the rotation axis, By analogy with airfoil theory for an airfoil of finite wing span, we assume the
"planar-cross section® hypothesis; i. e., we assume that the flow pattern near a given layer does not differ from the
planar flow of a circle with circulation I' = 27w (a® — z*). The transverse force dF acting on the layer dr is calculated
from the Zhukovskii equation dF = pvI'dz (pvI' is the force per unit length of an infinite cylinder). For the total force
F, we find
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where m is the mass of the particle,

The secondary flow from the equator toward the poles which arises around the rotating sphere [1] has not been
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taken into account, so this equation should yield slightly exaggerated values of the transverse x force. However, an
experimental check of this equation [2] shows that the correction may be neglected for rapidly rotating small particles.
Taking into account the direction of the Magnus force, we finally write

F=wq%PXu] @=w—v). (3)

Here u and w are the particle's relative and absolute velocities, respectively, When the transverse force is taken into
account, the equation of motion of the particle, which is experiencing quadratic drag, becomes
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where wy. = v, = 0, We assume |u| is constant, When the particle lags only slightly behind the flow, we have |u| ~|v,|;
when Yo LV, we have

lul=VEiFo.2

We now imagine that we unfold the cylindrical surface in which the particle is moving into a plane; i, e., we
consider the planar motion of the particle between two parallel planes under the influence of a translational flow at
velocity v = Vo. The familiar justification for this approximation is the fact that a particle moving along a cylindrical

.surface acquires an angular velocity w directed radially when it collides with the wall.

According to Eq. (3), the transverse force does not acquire a radial component, The assumption of the constant
v transverse to the flow is based on a rather large value of the corresponding Reynolds number, under which conditions
the relative thickness of the x boundary layers is small, Projecting Eq. (4) onto the coordinate axes, we find
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(For convenience here, the sign of w has been changed, so that w is assumed constant when the particle rolls from
left to right along the horizontal plane. ) The solution of system (5) is

We=v+e?(dcost+ Bsint), Wy=¢"(Bcost— A sin 7). (6)
where A and B are arbitrary constants,

To determine the effect of the Magnus force, we consider the following example. We assume that there is no
resistance force, so that A = 0, We further assume that w, = Wy =Xx=y= 0 when 1= 0, and that the second plane is
absent, In this case, we have B=0, A =v, and

we=v(l=—cC0sT), wWy=wvsinT,
z=x(t—sint), y=unv{l—cosT)

The last two equations are the parametric equations of a cycloid. Under the influence of the Magnus force, the particle
starts to move vertically upward, and then turns to the right., At 7=, it reaches its highest point x = 2xv, at which
wy = 2V, and then descends along a trajectory symmetric with respect to the ascent trajectory. During each cycloid
spacing, the Magnus force changes sign twice: at 7=7/2and 37/ 2, whenwx=v. In the gap 7/2< 1< 3w/ 2, the particle
moves more rapidly than the flow, so the Magnus force is directed vertically downward. The average horizontal
particle velocity over the period is {(wy) = v despite the absence of drag. The collision of the particle with the
plane may be interpreted as the result of an impulsive force with impulse I. We have the following relation:

mAw, = I, mAwy = Iy, JA® = —1)y dl, . (7)

Here we have Aw = w+ — w~, where the plus sign and minus sign denote quantities before and after the collision,
respectively; and J = 0.1 md? is the moment of inertia of the sphere, It follows from the first and last of Egs. (7) that

Awy = — Vs dAo. (8)

System (7) contains five unknowns: w;z, W;-r, wt, Iy, and Iy; we must therefore find two more relations.
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For the first relation, we use the Newtonian equation
wyt = —Mwy” (9)
where u is the Newtonian "coefficient of restitution, "
To find the missing relation, we note that during a frictional collision, two cases are possible: first, the particle
stops sliding along the surface during the collision, and
wet = 1Yy o¥d; (10)
second, the particle continues to slide after the collison. In the latter case, the "dry-friction" law is used: I, = f[y,

where f is the coefficient of friction, Which case actually occurs depends on the surface properties and on the angle at
which the particle strikes the plane, Below, we consider only the first possibility, and use Eq. (10).

The problem of seeking the steady-state, i.e., periodic, motion of the particle in a flow between the two planes
is formulated in the following manner., We consider the particle motion between collisions, At the instant the particle

o

leaves the lower plane, we assume 7= 0, wy= Wy, Wy = wo. The indices will be omitted from the corresponding

quantities for the instant at which the particle collides with the upper surface.

We assume the angular velocity w of the particle is constant during the motion. The periodicity condition requires
the following:

Wy® == Wy T, wy? = wy+, Wy =Wy, Wy==—wy~, Ao=20.
Applying these equations to Egs, (8)~(10), we find
Wit =S wy,  w,® =pwy, Yeod=w,® (11)

Equations (11) show how the particle velocity should increase during its free flight under the influence of the Magnus
force in order that this increase compensate for the loss during the collisionand in order that periodic motion be
possible,

From conditions (11), we can determine the constants A and B in (6):

4 4 .
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A==9+5pe (9 4-5py M cos T, (12)

To determine T we specify the distance between planes, Integrating the second of relations (6), and using (12), we
find

dow
b ﬂ%lﬁ_ [+ pe? — () e cost—A (1 —p) e sin 7] (13)

The last of relations (11) yields

d 5 P
92— = -Zv— [+ e — (1 4+ p)e*Teost] . (14)

The unknowns w and 7 should be determined from Eqs, (13) and (14).

We can calculate the average translational velocity of the particle, {(wy) = x/% 7. Integrating the first of relations
(6), we find
(t + 13 o
v

4
=150 — o ([ pemT — (1 ) e cos 1] + {1 —p) e sin T

Using Egs, (13) and (14), we convert this to
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Using the notation

B=23/80C]ulv, (16)
we find
o= 0 fls/Ad. (17)
Then Eqgs. (13) and (14) become
- s
e s,
poAtpe? e et g (18)

9 - 5pe™ — (9u + 5) e T cos T

Here A and 1 are unknowns. Using Egs, (12), (13), and (14), we find

Bewp= b [0f  AEMAT_ 2 p e
T TR [m Ta | = 5o h et ML

In order to have w,, = 0, we must have o < 1/(1 + A?). When w_ = Wy = 0, we have 7 = 7 (the maximum possible
particle velocity is @) = (1 — 477 1aB), When o> 1/(1 + A%), there can be no periodic motion,

It is difficult to find the exact solution of (18), so we limit ourselves to an approximate solution; i.e., we set

gy = 2 j”’“ :
~ oy (19)
Wy = i 3 .

The use of Egs. (19) does not produce a large error for a values which are not too large, since the functions
x(7) and y(7) increase monotonically for « < 1/(1 + A%). Substituting (11) into (19), we find

{Wyy = L wy®,  Cwyd= _h_ = f4-n
ad
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Furthermore, using (17), we find
o= TBv/<wy> .
Substituting the w, A, and 7 values into Eq, (15), we find the cubic equation
t—apf+ab—a(l —a)jz—ab=0,

_<wx> — _7(1‘”)
a=, a=493°, b= 2(1+u)4932' (20)

Equation (20) is conveniently analyzed through a consideration of the a(z) dependence, Some strightforward
manipulations yield

_ 24 [bt@—bz ~ VBt @—bF Tz
- 3 (z Faz) = ’ (21

from which it follows that «(0) = 0 and o(1) = 1/(1 + a). When « « 1, we find from (20) that

Z = (ab)r =y (C)"’"(lz %‘E; “‘1 ;i —Zi u) .

2

This expression loses its validity at 4 values close to unity. Wheny = 1, we have

s au N2 21 Ju| o\
“(ra) ‘WET<1—~:¢> .
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We note that Eq, (22) can be found directly from Egs. (6) and (11) by setting sin 7 =7, cos 7= 1, and e ™M ~ 1 —
— At, which is a valid procedure when 7 <«< 1. The accompanying figure compares some experimental data and some
data calculated from Eq. (23). The experiments were carried out in a vortex chamber about 300 mm in diameter.
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Points 1 in the figure corresponds to plexiglas spheres 1 and 2 mm in diameter; points 2 corresponds to a steel
sphere 1 mm in diameter (¢ '= 0.9 and @ = 0.01); and points 3 correspond to a plexiglas sphere 3 mm in diameter (4 =
0.57 and o = 0.02), The agreement between theory and experiment is seen to be completely satisfactory. The experi-
ments will be described in a separate communication.
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